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High-temperature series are presented for the spin-spin correlation function of the spin-
infinity nearest-neighbor Heisenberg ferromagnet on the fcc lattice. Our zero-field series are
to tenth order in the interaction, while our finite field series are to eighth order in the inter-

action.

Previous analysis of these series indicated y=1.405+0.020 and v=0.717 +0.007.

These series are used to determine the true correlation length. Further examination of these
series indicates that, where the inverse correlation length k is not much smaller than the mo-
mentum transfer & (explicitly «%/k? >0.08), the correlations in momentum space are well repre-
sented by the Ornstein-Zernike form p"(¢® +1%), where 1 has been found to be 0.040 +0.008, not

zero as in mean-field theories.

I. INTRODUCTION

In the preceding paper, hereafter referred to as
I, we analyzed series derived from the correlation-
function series in order to determine the form of
the leading critical singularities of some of the
physical properties.! There is also interest in the
functional dependence of the critical correlations
on reduced temperature €=1 - T,/T and spin
separation r. This dependence has been investigated
for the spin-; Ising model in which only the z
components of the spins are coupled®™; but, to
our knowledge, this is the first such investigation
for the Heisenberg model which has isotropic spin-
spin coupling.

The classical (spin-infinity) Heisenberg model
is a system of classical unit vectors §(1"',) at all
sites ¢ of the lattice interacting with their nearest
neighbors and with an external field H applied in
the z direction through the Hamiltonian

- B¥=p (E S(F,) - 8(F,) + 2 SH(T),
i,i) i

v=BJ, h=pmH (1.1)

where the first sum is over all nearest-neighbor
pairs, the second is over all lattice sites, J is
the coupling strength, and 8=1/kT. We consider
the correlations between S*(0) and S*(f'), that is,
T(F, T, 1) = ($* (0)S(F)) —(s*(0))¢* (F)) ,  (1.2)
where (X) denotes the thermal average of X,

that is (X )= Tr(Xe™)/Tre®**. In zero field, one
finds T*4(F, T,h=0)=T*(¥, T, h=0)0,,, aB=x, y,
or z; thus, we drop the superscript labels and
consider only the correlations between the z com-
ponents of spin. A rearrangement of these series,
which will be discussed in Sec. III, is presented
in Table I so that the reader might check the as-

4

sertions in either of these papers.

It has been postulated that I'(¥, T, # =0) has the
scaling form D(k¥)/7*"%#" for ka <1 and for
r/a>1, where r=|T|, k=kq€", d is the dimen-
sionality, and a is the nearest-neighbor dis-
tance.® 8 This assertion has been tested and the
form of D(x) determined for the spin-3 Ising
model in both two? and three® * dimensions. We
use methods identical to those of Ref. 4 to in-
vestigate these matters for the Heisenberg model.
The scaling form of the spatial correlations im-
plies that, for the correlations in momentum
space, one has

TE T,h)=2 ¢ I, T,h),
r

(1.3)
(K, T,h=0)= Pl.—,,f<|—§—|> .

Fisher and Burford have parametrized the function
f(x) and have determined the parameters for the
three -dimensional spin-3 Ising model on the simple
cubic lattice.® We use their parametrization for
the Heisenberg model and observe that it is qual-
itatively consistent with our investigations of the
spatial correlations. One of the parameters has

an importance quite independent of the parametriza-
tion. This is the true correlation length x, which
is the solution of the equation I'"!(ix, T, 1) = 0 and
which provides a definition of the inverse correla-
tion length independent of any scaling assumptions.
These investigations of the correlations, in both
coordinate and momentum space, strengthen the
belief that the Ornstein-Zernike form x"e™"/»

[or " /(k®+k?)] will be an accurate approximant

as long as k7 [or «%/k? is not small.

II. EXTRAPOLATION OF I'(r, T, h =0)

In this section, we test the scaling prediction
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TABLE 1 (Continued)-

lmn

=2)

X, m,n, i, j

—0.002718740 034 9798

332
400

—0.013 276 024 957 34318
—0.011186 587 401 13028

411

—0.003 827709 203 86128
—0.000 407 15743901158

420
422

431

—0.000 148 205050 92318
~0.000 002 341106 80728

440
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(%, T,h=0)=D(kr) /**" and determine the form of
D(x), using the methods of Ref. 4 to extrapolate
our correlation-function series for given values of
rand 7. It is reasonable to expect that the leading
singularity of (¥, T,0) is the energy-density
singularity €!'-*,3% ¢ so that

', T,0)=T(F, T¢, 0) + E(F)e'®
+higher ordersin € . (2.1)

This means that the partial sums
- N -
T, T,0)= 22 QF,n,j=0)v"
n=0

approach I'(f, T, 0)=I'"(F, T, 0) in the same way
that the partial sums of the Taylor expansion of

o

e 3 C,(1-a) (i)

n=0 Ve

approach €%, €=1-v/vc=1~T¢/T, where
C,(1 - a) is the nth Taylor coefficient. Thus, to
leading order in 1/N,

r, 7,0)-I%%, 7,00=Bgy(1 -0, T) ,
(2.2)

3 —o)( LeY
al-a,T)= 2 C,(1 a)< T) ,

where, using the values of T and a from I, the
only unknowns are I'(¥, 7, 0) and B. The large un-
certainty in @, almost 50%, might be thought to
greatly reduce the accuracy of the extrapolation;
but actually the uncertainty in 1 — ¢ is less than
6% and will not greatly affect the accuracy of the
extrapolations. Equation (2. 2) for two consecutive
values of N yields a pair of linear equations in two
unknowns, I'(T,T,0) and B, giving an estimate for
I'(Y, T,0). We approximate the higher orders in

€ of Eq. (2.1) by the assumption

I, 7,0)-T¥F, T,0)
=gy(1 = a, T)(By+By/N+By/Na+-+2) . (2.3)

We can then use three consecutive N values in Eq.
(2.3) with B;=0, ¢>1, and solve the three linear
equations for another estimate of I'(T, T, 0), the four
linear equations with B;=0, ¢ >2, for a third es-
timate of I'(¥, 7, 0), and so forth. We thus build
up a table of estimates much like an ordinary
Neville table.

We performed this extrapolation for I'(¥, T, 0)
in an attempt to observe its large » behavior
I(r, T, 0) -~ D(0)/»**". The extrapolation at T, is
only rapidly convergent for seven of the nearest
sites, 1< 7/a < 2.83, which are not strictly asymp-
totic; however, if the asymptotic form is valid
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FIG. 1. Log-log plot of ¥I"(F, T¢, 0) vs . The value

for T=a(Z, 0, 0), is well below the others and, thus,
shows the same departures from spherical symmetry ob-
served for this site in similar plots for the three-dimen-
sional Ising model. The straight line of slope —n=-0.04
fits the data better than either the steeper line of slope
—0.08 or 7, the horizontal representing n=0.00.

here for as short a range as in the two-dimensional
Ising model, these sites should determine 7.
Shown in Fig. 1 is a log-log plot of »I'(r, T¢, 0)

vs 7 for these sites. The uncertainties and de-
partures from spherical symmetry limit our ac-
curacy in determining n; however, the straight
line of slope —n=-0.040 fits the data much better
than either the steeper line representing -7
=-0.080 or the horizontal representing 1 =0. 00.
Therefore, this determination is consistent with
(if somewhat less accurate than) the assertion
1n=0.040+0.008 of I.

Extrapolations for I'(F, T, 0) were performed for
0.01< €<0.08 and for 1< »/a < V10 including the
11 nearest sites, except (@v2 V2,0, 0) which, as can
be seen in Fig. 1, exhibits significant deviations
from spherical symmetry. Figure 2 shows the
results of these extrapolations in a semilog plot
of (r/a)**" (¥, T, 0)/(kr)" vs k¥ =kye"r. For large
kv, T(F, T, 0) is believed to have the Ornstein-
Zernike form k"e™"/r. Thus, in the Ornstein-
Zernike region, the values in Fig. 2 should be
described by a straight line of slope —1.0. The

F(I?,T,h)=i i f} i(Zcosk, l;><2cosk ‘/_)<2cosk —)i ‘h’Q(%(l,m,n),i,j) .
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values of the indices used were the ones determined
inI, »=0.717 and n=0.040. The dependence does
appear to be linear for the range of kv tested;

there are few values for k» <0.02. The value of
koa=2.50x0.10 was chosen so that the slope of

the line would be —1.0; as we shall see, this value
is consistent with the value determined directly
from series.

[II. TRUE CORRELATION LENGTH

Fisher and Burford have demonstrated that, at
least for the zero-field spin-3 Ising system above
T, there exists a unique solution of the equation
r-1(k, T,h=0)=0 for k% as a power series in v.3
Recently, Fisher and Camp have generalized this
result.” This strengthens the long-held belief that
the singularities of (K, T, ) in the complex k
plane, nearest | k| =0, are simple poles at k= +ik.
Fisher and Burford determined the solution using
a diagrammatic prescription; however, it should
be possible to find this solution using our correla-
tion-function series. To this end, we derive
r'-Y(K, T, k) from our series.

Let us define

I'(K, Th)—Z) ¢TI I(E, T, h)

=L e FE QF,1,5) (3.1)
T

where we have derived all the Q(r, 4, = 0) for

i< 10 and all the Q(r,4,j=2) for i< 8. We are
working with the fcc lattice whose lattice sites are
uniquely determined by the prescription r = (a/v2)
X (l,m,n) for all integers I, m, »n such that [ +m +n
is an even integer, a being the nearest-neighbor
distance. Therefore, like several other cubic lat-
tices, the fcc is symmetric upon reflection in the
plane defined by any cube face. Because of this
symmetry, Eq. (3.1) can be transformed so that
the sum is only over one octant of the lattice,

‘7z (3.2)

Using the relation between 2 coslx and the (2cosx)™, for all m=1, in Eq. (3.2), it is straightforward to find

the coefficients q(Z, m, n, i, j) in the series

(7 _ k.a !
3Tk, T,h)= 2 2cos—=- ) | 2cos

V2

t,mn,i,j

sTYE, T,0) =

k a)”‘( E a>" ; .
— 2cos—= ‘! lym,n,i, .
75 0 75 ) ? ql,m,n,i,j)

Again, it is straightforward to find the inverse of (3. 3),

1 m n
l E”<2cos%§_g> (Zcos %) ( '};) vl sel, m,n,i,j) .
ym,n,t,

(3.3)

(3.4)
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FIG. 2. Semilog plot of (+/&)'*"T' &, T, 0)/ (k)" vs »
for 0.01 <¢ =0.08 and for ten sites ¥, where 1 <»/a <I0.
The values of the variables used in this plot are »=0.717,
1=0.040, and ke =2.50.

We have chosen to present our series in this form,
Table I, partly because it is useful in finding the
true correlation length but primarily for reasons
of economy. For i< 10, @((a/V2)I,m,n),i,j) is
nonzero for 122 inequivalent sites T, while to the
same order (I, m, n,i,j) is nonzero for only nine
inequivalent sites. It should not be hard for the
reader to reverse the above procedure so that he
might find T'(¥, T, ) and, consequently, all the
series analyzed in I.

Before we proceed to find an iterative solution
for the true correlation length, we must choose a
direction for the solution and determine how the
solution is affected by unknown terms in the series
(K, T,h=0). The equation can be solved for ik
in any chosen direction. After Fisher and Burford,
we choose to consider correlations in the (1,0, 0)
direction:

ir'(k=(%,0,0), T, h=0)

14
= ?’; Ik (2 cos ’%) H(,i);H{,q)

=25 2™, m,n,i,j=0) . (8.5)

mn
By requiring that the coefficient of zeroth order
in v of ™! (i, T, h =0) be zero, we find, from
Table 1I, 2cos(ika/v2)=3/4v. This lowest order
in the solution was derived assuming that the
unknown terms H(n,i,j=0) for i >10 could be
neglected; but we see that, if nonzero, H(11,11,0)
will contribute to zeroth order in I'~'(ik, T, 0).
However, it can be shown by diagrammatic argu-
ments that, if »>1, H(n,i,j#0) is zero for i <2n
and that H(n, i, 0) is zero for i <3n. The arguments
leading to these results are rather complicated
and will be more appropriately treated elsewhere.®
Hence, the lowest unknown order in I'"(ix, T, 0),
that is [2cos(ika /V2)]" H(n,i,0), is v* coming from
both H(3,11,0) and H(4,12,0), allowing us to cor-
rectly determine eight terms in the iterative solu-
tion for 2cos(ika/v2). We find the next term in
the solution by requiring that the coefficient of »
in T~ (ik, T, 0) be zero:

sT7NK, T,0) =1 =40 + 4024 -+«
SERRRRTCY AR SR B
=—dp(L+b)+een . (3.6)

Thus 2cosika/V2 =3/4v-1+---. We can proceed
in this manner to find the first eight terms of the
solution. Shown in Table III is a rearrangement
of this solution,

A 1 2
" 2cos(ika/V2) - 2~ (ka)?

Since « is the inverse correlation length k=1/¢
=Ky€’, A should diverge as 2/(kqa€”)? (the same
singularity as u,/3y, also shown in Table III).
Shown with these series in Table III are Neville
tables of the ratio sequence np,vc - +1 [sequence
(2.3) of 1] and of the log-derivative sequence [Eq.
(2.5) of 1] for the series A and p,/3x using T¢

as k- 0.

TABLE II. Shown are the coefficients H(l, ¢, j=0) of the series, Eq. (3.5), for %F"(Ez (®,0,0), T, h=0).

H({, i, 0)
+1.0 —1.333333333v +1.333 333 3330° +1.718 518 51928
0 +2.992592593% +5.949 065 2570° +12.724 499 310% +29.103 123137
+170. 231 46849y8 +175., 989 216 47° +453.093 743 9p1°
—1.333333333y +0.00° —0.059 259 259 393 —0.237037 037 00!
1 —0.687971781 30° —1.8526513810° —4,855513489%" —12.628 411 22°
—33.010528500° —86.953 750 99910
) —0.021947 873 85 —0.140 349 337 007 —0.617 477997 Tv8 —2.372944 844y°

—8.43731836310

3 —-0.01286958300° —0.140 945018 710
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TABLE III. Presented are the series A and p,/3y, analysis of these series for 2v using Neville tables of sequences
(2.3) and (2.5) of I with To=3.1753, analysis for kya using Neville tables of sequence (3.7) with T-=3.1753 and v =0.718,
and the series ¢ =A/(uy/3x) — 1, which is a measure of the departure from Ornstein Zernike.

#z/3x

1.3333333333333
5.3333333333333
19.614 814 814 815
69.451 851 851 852
240.450 934 744 27
820.228414658 04
2768.9075633940
9275.0107261144
30882.974301 814
102341.800 22798

2v from sequence (2.3) of I, npvg—n+1

1.4458
1.4420 1.4191
1.4394 1.4214 1.4287

1.4376 1.4234 1.4303 1.4334
1.4363 1.4251 1.4316 1.4345

2y from sequence (2.5) of 1

1.3927

1.3992 1.4380

1.4040 1.4374 1.4357

1.4077 1.4374 1.4372 1.4403
1.4107 1.4376 1.4383 1.4409

kea from sequence (3.7)

n A
1 1.3333333333333
2 5.3333333333333
3 19.614 814814815
4 69.451 851851852
5 240.467 396 749 62
6 820.333676 660 79
7 2769.3771794370
8 9276.891068188 9
9
10
4 1.4604
5 1.4520 1.4184
6 1.4461 1.4168 1.4135
7 1.4423 1.4189 1.4240 1.4380
8 1.4396 1.4216 1.4296 1.4388
9
10
4 1.3660
5 1.3836 1.4541
6 1.3931 1.4408 1.4142
7 1.3995 1.4374 1.4289 1.4486
8 1.4042 1.4373 1.4374 1.4514
9
10
1 2.6153
2 2.5716
3 2.5572
4 2.5502 2.5292
5 2.5465 2.5315 2.5349
6 2.5444 2.5344 2.5403 2.5458
7 2.5434 2.5370 2.5433 2.5473 2.5484
8 2.5428 2.5389 2.5449 2.5476 2.5480
9
10

2.6153

2.5716

2.5572

2.5502 2.5292

2.5465 2.5319 2.5360

2.5446 2.5439 2.5411 2.5462

2.5436 2.5375 2.5438 2.5474 2.5483
2.5431 2.5390 2.5456 2.5485 2.5495
2.5429 2.5411 2.5468 2.5492 2.5501
2.5428 2.5424 2.5476 2.5496 2.5503

$=0.012345678 9v4+0.029 563786 1v°+0.052 338 23240°+0.122914782 75"

=3.1753. The limits of these sequences for both
series should be 2v; and, indeed, taking proper
account of the uncertainty in 7., we would assert

2v=1,436+0.014 or v=0.718x0.007 in good agree-

ment with the result of I, v=0.7171+0.007. We
determine kqa using the traditional method, ® as
follows. Since the series

A= A"
n=0
has
2 _ 2 <\ Tm+2v) v\
(koa)?€® ~ (kga)® i Tln+1)(2v) (vc) ’

where I'(z) is the familiar I function, as its lead-

ing singularity, the limit of the sequence
[2T(n + 2v)/T (0 + 1)L (20)A(n) 0 |*/ 2 8.7

is kga. The Neville tables of this sequence for
the two series A and u,/3x are shown in Table
III. From these it can be seen that 2.535 < k,a
<2.550; when proper account is taken of the un-
certainties in T; and v, we assert kya = 2.545
+0.020. This value is somewhat larger than,
but not inconsistent with, the one determined
from the extrapolation of I'(r, T, 0) in Sec. II.

IV. FISHER-BURFORD PARAMETRIZATION

If the correlation function were exactly of the
Ornstein-Zernike form f(T) /(k2+«?, f(T) being
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some function of 7, then the series A would equal
K2/3x. As was observed by Fisher and Burford
for the spin-3 Ising model, the series

A
= -1,
¢ Ko/ 3X

shown in Table III, which is a measure of departure
from Ornstein Zernike, begins with fourth order

in v, is termwise small, and appears to be con-
vergent.

We now consider the approximant to I'(K, T, 2 = 0)
which uses series we have already presented, as
suggested by Fisher and Burford. This approxi-
mant? is

'K, T,h=0)=x<1+ 2%-1—\2—(3611)2>n/2/(1+ %(JC a)z> .

(4.1)

(xa)2=6[1 -(1/q) 23 e*“], where the sum is over
the ¢ nearest-neighbor lattice sites 6; this variable
has both the symmetry of the lattice, so that
r®+G, 7,0 =C(K, T,0) for G (a reciprocal lattice
vector) and the appropriate limiting behavior
(%a)?~ (ka)? as k2~ 0. For the fcc lattice and for
K=(%,0,0), (xa)?=4-4cos(ka/V2). ¢ is included
in the approximant in such a way that the second
moment of the approximant exactly equals the
second moment of the correlations. This pa-
rametrization has the following advantages: It has
the proper simple pole structure, and its zeroth
and second moments equal x and p, respectively.

Near the critical point -0, T - T, this ap-
proximant takes the form

k2 >'I/2/<1+ k2>

Te

r(k, T,0)=x<1+f—l¢ (4.2)

We have determined the properties of all the pa-
rameters of Eq. (4. 2) except

N
¢| =2 ¢.08 .
T=Tc n=0

Using the ratio method [sequence (2. 3) of I| with
T =3.1753 on this four-term series, we find the
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sequence —0.299, —1.66, —0.882, which, al-
though badly behaved, is consistent with the as-
sumption that ¢ is convergent. Forming the partial
sums

N
¢1N =2 $.0%,
T=Tc n=0
one finds the sequence 0.00012, 0.00021, 0.000 26,
0.000 30; for this sequence, the linear extrapolants
are 0.00058, 0.00052, 0.00053, which indicate
that ¢IT=TC is quite small. Of course, the series
is very badly behaved; but it is still hard to believe
that ¢ is divergent or that ¢ Ir.r, >0.001. Using
this upper bound (2/17)<¢>|T=Tc =0.05 in Eq. (4.2),
we have

k"2"(1+0.05 k% k"2
1+£%/k2

This should be well approximated by the Ornstein-
Zernike form k" /(k2+k? except for large k%/k%
for £%/k?< 12 the discrepancy is less than 1%.
These deviations for large %/k? correspond to

the deviations observed for small k7, k» <0.1.

V. CONCLUSION

From examination of our series we have found
that, except for distances much smaller than a
coherence length, the Ornstein-Zernike form ap-
proximates well the critical spin-spin correlations.
As discussed in I, the results of a neutron scat-
tering experiment on RbMnF; agree well with our
predictions for y and v; but, for 7, the experiment
indicates that n=0. 067 +0.010, whereas we believe
that n=0.040+0.008.° However, Corliss et al.
assumed that T'(K, T, 0) = (k2+ «k?)" 2 /(k?+ k?) in fitting
their data. This approximation assumes that the
Fisher-Burford parameter ¢ |, _. =1 rather than
) lr=1'c =0 of Ornstein Zernike which is much
closer to the model results. We argue that their
form will opt for an excessively high value of 7
because, for fixed k2 and 7, (£%+«%" 2 will vary
more slowly with « than will «". Hence, to indicate
the same variation, (£%+k%"/2 requires a higher
value of n than does «".
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